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Abstract— This paper presents a new robust fault and state 
estimation based on recursive least square filter for linear 
stochastic systems with unknown disturbances. The novel 
elements of the algorithm are : a simple, easily implementable, 
square root method which is shown to solve the numerical 
problems affecting the unknown input filter algorithm and 
related information filter and smoothing algorithms; an iterative 
framework, where information and covariance filters and 
smoothing are sequentially run in order to estimate the state and 
fault. This method provides a direct estimate of the state and 
fault in a single block with a simple formulation. A numerical 
example is given in order to illustrate the performance of the 
proposed filter. 
Keywords—Kalman filtering, unbiased minimum-variance, state 
and fault estimation, unknown disturbance, square root, linear 
discret- time systems. 

I. INTRODUCTION 
In the past few years, the problem of filtering in the 

presence of unknown inputs has attracted big attention, due to 
its applications in environment. The unknown input filtering 
problem has been treated in the literature by different 
approaches. The first approach assumes that the model for 
dynamical evolution of the unknown inputs is available. When 
the properties of the unknown input are known, the augmented 
state Kalman filter (ASKF) is a solution. To reduce computat-
ion costs of the ASKF [1] proposed the two stage Kalman 
filter where the estimation of the state and unknown input are 
decoupled. The second approach treats the case when we not 
have a prior knowledge about the dynamical evolution for 
unknown input. Kitanidis [2] was the first to solve the 
problem using the linear unbiased minimum-variance. An 
extend Kitanidis filter using a paramaterizing technique to 
obtain an optimal filter (OEF) have been proposed by 
Darouach et al [3]. Hseih [4] has been developed a robust-two 
stage Kalman filter (RTSKF) equivalent to Kitanidis filter. An 
(OMVF) reported by C.S Hsieh [5] have been used in order to 
developed an optimal minimum variance filter (OMVF) to 
solve degradation problem encountered in (OEF). Gillijns and 
De Moor [6] has treated the problem of estimating the state in 
the presence of unknown inputs which affect the systems 
model. They have been developed a recursive filter which is 
optimal in the sense of minimum-variance. This filter has been 
extended by the same authors for joint input and state 
estimation to linear discrete-time systems with direct 
feedthrough where the state and the unknown input estimation 
are interconnected. This filter is called recursive three step 
filter (RTSF) [7] and is limited to direct feedthrough matrix 

with full rank. Cheng et al, [8] proposed a recursive optimal 
filter with global optimality in the sense of unbiased 
minimum-variance. This filter is limited to estimate the state. 
The case of an arbitrary rank has been proposed by Hsieh in 
[9] the designed optimal filter Known as ERTSF (Extend 
RTSF). Recently, another technique using a least square 
method have been proposed  by Talel et al, [10] to estimate 
the state and unknown input. 
The Fault Detection and Isolation (FDI) problem for linear 
systems with unknown disturbances is generally studied, see 
e.g. Nikoukhah [11], Keller, [12], Chen and Patton, [13,14], 
Ben Hmida et al, [15]. According to [11], a robust fault 
detection and isolation in continous-time is developed using 
the error innovation technique to generate an unbiased white 
residual signals. The fault is diagnosed by a statistical testing. 
A new method is developed in [16] to detect and isolate 
multiple faults appearing simultaneousely or sequentially in 
linear time-invariant stochastic discrete-time systems with 
unknown inputs [12]. Their methods consist of generating 
directional residuals using an isolation filter. In [13] the 
optimal filtering and robust fault diagnosis problem has been 
studied for stochastic systems with unknown disturbances. 
The output estimation error with disturbance decoupling is 
used as a residual signal. After that, a statistical testing 
procedure is applies to examine the residual and to diagnose 
faults. Netherless, the simultaneous actuator and sensor fault 
and state problem is not treated in [13, 14]. Recently, [17] 
present a new optimal recursive filter for state and fault 
estimation of linear stochastic systems with unknown 
disturbances. This method is based on the assumption that no 
prior knowledge about the dynamical evolution of the 
unknown disturbances is available. The filter has two 
advantages: it considers an arbitrary direct feedthrough matrix 
of the fault and it permits a multiple faults estimations.  
In order the overcome this problem, we introduce the square 
root approach into recursive least square filter. We assume 
that the unknown disturbances affect only the state equation, 
while, the fault affects both the state and the output equations 
where the direct feedthrough matrix has an arbitrary rank and 
under the specific condition that the process and measurement 
noise are correlated.  
 This paper is organized as follows. In Section 2, the 
problem of fault detection is specifically stated for stochastic 
system. In section 3, we develop a robust filter. Then, the 
performance of the designed filter is demonstrated through a 
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simulated example in section 4, followed by few concluding 
remarks in section 5.  

II. PROBLEM FORMULATION 
Consider the linear stochastic discrete-time system in the 
following form: 

1
x

k k k k k k k k k kx A x B u F f G d w+ = + + + +                          (1)  
y

k k k k kky C x F f v= + +                                                        (2) 

Where n
kx ∈ℜ is the state vector, m

ky ∈ℜ is the 

measurement vector, r
ku ∈ℜ   is the known input, p

kf ∈ℜ

is the additive fault vector and q
kd ∈ℜ is the unknown 

disturbances vector. The process noise kw and the 
measurement  noise kv  are correlated white noise sequences 
of zero-mean with joint covariance matrix  

             0
T

k T T k k
k k k

k k k

v R Sv w
w S Q

ε δ
⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥ = ≥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

                  (3) 

With 0kR > , where kδ  is the unit pulse. The matrices kA , 

kB , x
kF , kG , kC and y

kF are known and have appropriate 

dimensions. We assume that ( ),k kC A  is observable, 
m p q≥ +  and the initial state is uncorrelated with the white 
noises kw and kv . The initial state 0x  is a gaussian random 

variable with [ ]0 0ˆε =x x  and ( )( )0 0 0 0 0ˆ ˆε ⎡ ⎤− − =⎢ ⎥⎣ ⎦
T xx x x x P  

where [ ].ε denotes the expectation operator. The aim of this 
paper is to design an unbiased minimum-variance linear 
estimator of the state kx  and fault kf  without any information 
concerning the fault. 
First we represent the process and measurement noise in the 
following form: 

1/2

1/2
,

0

ϒ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

�
�

���	��

k

kk k

k kk x k

Rv v
w wX Q

  with   ( )0, +
⎡ ⎤
⎢ ⎥
⎣ ⎦

�
∼

�
k

m n
k

v
I

w
       (4)          

The matrices kX  and ,x kQ  satisfy 
/2−= T

k k kX S R , 1
,

−= − T
x k k k k kQ Q S R S                            (5)                                                 

To represent the state information an equation format, we 
introduce an auxiliary random variable / 1k kx −�  with mean zero 
and covariance matrix nI , that is ( )/ 1 0,−� ∼k k nx I . Since we 
assumed the covariance matrix / 1−k kP to be semi-positive 

definite, we can compute its square root 1/2
/ 1k kP −  such that:   

                                      1/2 /2
/ 1 / 1 / 1− − −= T

k k k k k kP P P                       (6) 
This square root can be chosen to be upper or lower triangular  
With / 1−�k kx , / 1ˆ −k kx , 1kd − and 1/2

/ 1k kP −  so defined , the variable 

kx  can be modeled through the following matrix equation :  
1/2

/ 1 1 1 / 1 / 1ˆk k k k k k k k kx x G d P x− − − − −= − − �                                   (7) 
This equation is called a generalized covariance representation  

          1/2
/ 1 / 1 / 1 1 1ˆk k k k k k k k kx x P x G d− − − − −= + +�                         (8) 

From equation (1), (2) and (9), we obtain the following set of 
constraint equations on the unknown kx , kf and 1kx + : 

1/2
/ 1/ 1 / 11

1 1/2

1/21 ,

0 0 0 0ˆ 0
0 0 0 0 0

0 0

n k kk k k k kk
ky

k k k k kk
kx kk k k kk x kk k n

I Px x xG
d

y C F f R v
d

GB u x wX QA F I

−− −−
−

+

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦−⎢ ⎥⎣ ⎦ ⎣ ⎦

�
�
�

   (9) 

Let this set of equations be denoted compactly by 
( ) ( ) ( ) ( ) ( ) ( ) ( )y k F k x k G k d k L k kμ= + +                      (10)     

The weighted least-square problem for the derivation of the 
square-root filter algorithm by: 

( ) ( )min
k

T

x
k kμ μ subject to ( ) ( ) ( ) ( ) ( ) ( ) ( )y k F k x k G k d k L k kμ= + +  

The goal of the analysis of the weighted least-square problem 
is the derivate of square root solution for the filtred and one 
step ahead predicted state and fault estimation. Therefore, we 
will address the numerical transformation involved in solving 
(10) in two consecutive parts. We start with the derivation of 
the square-root algorithm for computing the filtered state and 
fault estimation in section 3.1 and the derivation for the 
computation of the one-step ahead prediction is presented in 
section 3.2. 

We define the following transformation 
0

0 0
0 0

k m
m

l n

n

C I
T I

I

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

then using m
lT ,resulting transformed set of constraint equation 

is:  
( ) ( ) ( ) ( ) ( ) ( ) ( )m m m m

l l l lT y k T F k x k T G k d k T L k kμ= + +  
Then we have: 

1/2 1/2
/ 1/ 1 / 11

1 1/2
/ 1 1 / 1

1/21 ,

00 0ˆ 0
ˆ 0 0 0 0 0

0 0

y
k k k kk k k k k k k kk k

k
k k n k k k k k

kx kk k k kk k n k x k

C P RFC x y x xC G
d

x I f G P v
d

GB u x wA F I X Q

−− −−
−

− − −

+

⎡ ⎤−⎡ ⎤−−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎣ ⎦ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦

�
�
�

  (11)            

So from (11) we formulate the problem (LS) as follows:  

1

2
/ 1

/ 1ˆ ˆ ˆ, ,
1

0 0ˆ
ˆmin 0 0

k k k

y
k k k k k k

k k k
f x x x

k k kk k n

FC x y x
x I f

B u xA F I
+

−

−

+

⎡ ⎤−−⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
kW

    

                 (12) 

where kW  is the weighting matrix chosen as follows: 

1/2 1/2 1/2 1/2
/ 1 / 1

1/2 1/2
/ 1 / 1

1/2 1/2
, ,

0 0

0 0 0 0

0 0

T
k k k k k k k k

k k k k

k x k k x k

C P R C P R

P P

X Q X Q

− −

= − −

⎛ ⎞⎡ ⎤ ⎡ ⎤− −⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

kW            (13) 

 The objectif of the next section is to design an unbiased 
minimum variance linear estimator of the state kx   and the 
fault kf without any information concerning the fault kf  . 

.                          III.  FILTER DESIGN 
To solve the problem (12), we propose to decompose it into 
two parts: a first part to estimate an unbiased minimum 
variance of the state and fault and a second part to the time 
update of the filter. 
A   Measurement update  
The measurement update is derived from (12) by extracting 
the rows that depend only on kx   and  kf . This yield, 
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2

/ 1
ˆ ˆ, / 1

ˆ 0min
ˆ 0k k

y
k k k k kk

f x k k k

y C x xF
x fI

−

−

⎡ ⎤−⎡ ⎤ ⎡ ⎤
− ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

1,kW

                           (14) 

Where 1,kW denotes the weighting which we give a stochastic 
interpretation by choosing      

                  
1/2 1/2 1/2 1/2
/ 1 / 1

1/2 1/2
/ 1 / 10 0

T
k k k k k k k k

k k k k

C P R C P R

P P
− −

− −

⎛ ⎞⎡ ⎤ ⎡ ⎤− −⎜ ⎟= ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠
1,kW           (15) 

The problem is to determine a linear estimate ˆ ˆ,k kf x  of on the 
given data ky  and / 1ˆk kx − which have the following form    

                 

/ 1

/ 1

ˆ ˆ
ˆˆ

k k k kk
k

k kk

y C xf M
xx

−

−

⎡ ⎤ −⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦
                           (16) 

With 2 ( 2 )n m n
kM × +∈ℜ , such that both estimates are a 

minimum-variance unbiased estimate that is estimate with the 
properties: 
                      ( ) ( )ˆ 0,k k kx x xε ε= − =�                                (17) 

                     ( ) ( )ˆ 0,k k kf f fε ε= − =�                                (18) 

and the expression below are minimal: 

                         ( )( )ˆ ˆ ,T
k k k kx x x xε ⎡ ⎤− −⎢ ⎥⎣ ⎦

                            (19) 

                          ( )( )ˆ ˆ ,
T

k k k kf f f fε
⎡ ⎤
⎢ ⎥− −
⎢ ⎥⎣ ⎦

                           (20) 

a.  Unbiased estimation 
To obtain an unbiased estimation of state and fault, the matrix 

kM  must satisfy the following two algebraic constraints:  

                            00
00

y
nk

k
nn

IFM
II

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
                     (21)                                                                 

1

1

0
0

k k
k

k

C G
M

G
−

−

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
                            (22) 

We partitions the matrix 
11 12

21 22
k k

k
k k

M M
M

M M

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 in the constraint 

(21) as follows :  

                
12 11

22 21

0
0

y
k k nk

y nk k k

M M F I
IM M F

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦                                

(23) 

hence    { }12 11 22 210, , , 0y y
k k n k n kk kM M F I M I M F= = = =                (24)                                               

With 11 p m
kM ×∈ℜ , 21 n m

kM ×∈ℜ . On substituting the 
constraint equation (22) it can be given as follows  

11 12
1

21 22 1

0
0

k k k k

kk k

M M C G
GM M

−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦
  
                                         (25) 

11 12 11
1 1 1

21 22 21
1 1 1 1

0 0

0
k k k k k k k k

k k k k k k k k k

M C G M G M C G

M C G M G M C G G
− − −

− − − −

⎧ ⎧⎪ ⎪− + = =⎪ ⎪⎪ ⎪⇒⎨ ⎨⎪ ⎪− + = =⎪ ⎪⎪ ⎪⎩ ⎩
              (26) 

The estimators k̂f  and ˆkx  are unbiased if 11
kM and 21

kM
satisfy the following constraints:  
                     11

k k kM E T=                                                   (27) 

                    21
k k kM E =Γ                                                    (28) 

where   

1
y

k k kkE F C G −
⎡ ⎤= ⎢ ⎥⎣ ⎦

, 0k pT I⎡ ⎤= ⎢ ⎥⎣ ⎦ and [ ]10k kG −Γ =  (29)      

The innovation error ky�  has the following form  

 / 1 1 1ˆ y
k k k k k k k k k kky y C x F f C G d e− − −= − = + +�             (30)  

 where 
/ 1k k k k ke C x v−= +�                                                              (31)  

/ 1 1 1 1 1 1
x

k k k k k k kx A x F f w− − − − − −= + +�� �
                              (32)      

Lemma: Let rank ( )y
kF p= ; the necessary and sufficient 

conditions so that the estimator ˆkx  and k̂f  are unbiased as 
matrix kE  is full colum rank, that is, 

( ) ( )1
y

K k kkrank E rank F C G p q−= = + . 

In the next subsection, we propose to determine the gain 11
kM  

and 12
kM  by satisfying the unbiasedness constraint (17) and 

(18). 

b. fault estimation 
Equation (30) will be written as   

                            
1

k
k k k

k

f
y E e

d −

⎡ ⎤
⎢ ⎥= +⎢ ⎥⎣ ⎦

�                                        (33) 

Sine ke  not have unit variance and ky�  does not satisfy the 
assumption of the Gauss-Markov theorem [17], the least 
square solution do not have a minimum-varianve. Netherless, 
the covariance matrix of ke  has the following form  

/ 1 ,T x T
k k k k k k k kH e e C P C Rε −

⎡ ⎤= = +⎢ ⎥⎣ ⎦         
                           (34) 

where   ( )/ 1 / 1 / 1
x T

k k k k k kP x xε− − −= � �  

For that, k̂f can be obtained by a weighted least square (WLS) 

estimation with a weighting matrix 1.kH−   

Theorem : Let / 1k kx −
�  be unbiased ; the matrix kH  is 

positive definite and the matrix kE  on  is full column rank ,  

then to have a UMV fault estimation, the matrix gain 11
kM  is 

given by  

( )*11 *
k k kM T E=  where ( )* 1 1T T

k k k k k kE E H E E H− −=             (35) 

Proof: Under that kH  is positive definite and an invertible 

matrix m m
kL ×∈ℜ  verifies T

k k kL L H= , so we can rewrite 
(30) as follows: 

               1 1 1

1

k
k k k k k k

k

f
L y L E L e

d
− − −

−

⎡ ⎤
⎢ ⎥= +⎢ ⎥⎣ ⎦

�                                       (36)

  If the matrix kE is full column rank, that is, ( )krank E p q= + , 
then the matrix ( )1T

k k kE H E−  is invertible. Solving (36) by an  
LS estimation is equivalent to solve (33) by WLS solution: 

             ( ) 1* 1 1ˆ T T
k k k k k k k kf T E H E E H y

−− −= �                        (37)           
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suppose that 

               ( ) ( )*11 1 1T T
k k k k k k kM T E H E E H− −=                        (38) 

In this way, we consider that 1
k kL e−

 has a unit variance and 
(36) can satisfy the assumption of the Gauss- Markov 
theorem. Hence, (37) is the UMV estimate of kf .  
The fault estimation error is given by: 

( )11 11 11
1

ˆ y
k k k k k k k k k kkf f f I M F f M C G d M e−= − = − − −� (39)        

Then, the fault error estimation is rewritten as follows: 

( )** 11
k k kf M e=−�                                                                 (40) 

from equation  (40) we can calculate kf� :   

 Using (34), the covariance f
kP  matrix is given by  

( ) ( ) ( ) ( )* * 1* * * 11 11 1Tf T T T
k k k k k k k k k kkP f f M H M T E H E Tε

−−= = =� �         (41)               

c.      state estimation 
In this part, we propose to obtain to obtain an unbiased 
minimum variance state estimator to calculate the gain matrix 

21
kM  wich will minimise the trace of covariance matrix x

kP  
under the unbiasedness constraint (28). 
Théoreme: Let 1T

k k kE H E− be nonsingular, then the state gain 

matrix 21
kM by    

     ( ) ( )*21 1 * *
/ 1
x T

k k k k k k k k kM P C H I E E E−
−= − +Γ                (42) 

Proof: 
According to equation (16) and after (42), we can deduce that 

( )22 21
/ / 1 / 1ˆ ˆ ˆk k k k k k k k k kx M x M y C x− −= + −                                       (43)               

From (24), we know that 22
k nM I=  then we have:  

( )21
/ / 1 / 1ˆ ˆ ˆk k k k k k k k kx x M y C x− −= + −                                             (44) 

Using (44) the state estimation error, given by    

                    ˆk k kx x x= −�                                                         (45)                 
( ) ( )21 11 11 21

/ 1 1 1 1
y

k k k k k k k k k k k k k kkx I M C x M F f M C G G d M v− − − −= − − − − −��   

Considering (28) and (45), we determine x
kP  as follows: 

  

( ) ( ) ( )
( ) ( )

21 21 21 21
/ 1

21 21 21
/ 1 / 12

T Tx x
k k k k k k k k k k

T Tx T x
k k k k k k k k k

P I M C P I M C M R M

M H M P H M P

−

− −

= − − +

= − +                 (46)
  

 So, the optimization problem can be solved using Lagrange 
multipliers                 

( ) ( ) ( )21 21 21 21
/ 1 / 12 2

T T Tx T x T
k k k k k k k k k k k k ktrace M C M P C M P trace M E− −

⎧ ⎫⎧ ⎫ ⎛ ⎞⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎟⎜− + − −Γ Λ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟⎟⎜⎪ ⎪ ⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭ ⎪ ⎪⎩ ⎭
   (47)                    

where kΛ  is the matrix of Lagrange multipliers. 

Setting the derivate of (47) with respect to 21
kM we obtain:  

   ( )*21
/ 1 0

T T
k k k k k k kH M C P E−− − Λ =                              (48) 

Equation (28) and (48) form the linear systems of equation 

   ( )21
/ 1

0

T x
k k k k k k
T TTk kk

H E M C P

E
−

⎡ ⎤ ⎡ ⎤⎡ ⎤− ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥Γ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦Λ⎣ ⎦

                                 (49)               

So, if ( )1T
k k kE H E− is non singular, (49) will have unique 

solution. 
B.  The filter time update 
For the time update, we extract from (11) the equation that 
depend on 1kx +  and substitute kx  and kf for their LS 

estimates /ˆk kx and /k̂ kf obtained during the measurement 
update. This yield,           
   ( )/ 1 /ˆ x x

k k k k k k k k k k k k k kA x F f B u x A x F f w++ + = − + +��                   (50) 
The corresponding LS problem is given by     

1

2
1 /ˆmin

k

x
k k k k k k k k

x
x A x F f B u

+
+ − − −

3,kW
                            (51)                 

where 3,kW denotes the weighting matrix which we choose   

( )( )
1

/ /
Tx x

k k k k k k k k k k k kA x F f w A x F f wε
−⎛ ⎞⎟⎜= + + + + ⎟⎜ ⎟⎟⎜⎝ ⎠

� �� �3,kW                 (52)  
 From equation (51), we have 

     1/ /
ˆˆ ˆ x

k k k k k k k k kx A x F f B u+ = + +                                   (53) 

From equation (32), the prior covariance / 1
x

k kP −  has the 
following form: 

( )
** 11 1

/ 1 1 1 1* *
11 1

Txfx kkx x k
tk k k k kfx f x

kk k

AP P
P A F Q

P P F

−− −
− − − −

−− −

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥⎡ ⎤ ⎢ ⎥= +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

       (54)          

Where  * * *
/

xf T T
k kk kP x fε ⎡ ⎤= ⎢ ⎥⎣ ⎦
��  is calculated by using (16)     

( ) ( ) ( )* * ** 21 21 22 22
/ 1/

T Txf x T
k k k k k k k k kk kP I M C P C M M R M−

⎛ ⎞⎟⎜=− − +⎟⎜ ⎟⎟⎜⎝ ⎠
           (55) 

4.  EXTENDED FILTER  
In this section, we seek to extend this filter to consider the 
case  where ( )0 y

krang F p< ≤ . To solve this problem, we 

use the same approach developed by [10] . If we introduce 
(31) et (32) in  (39) , then we will be able to write the fault 
error estimation in the following form :  

( ) ( )11 11 11
1 1 / 1

y
k n k k k k k k k k k k kkf I M F f M C G d M C x v− − −= − − − +� �           (56) 

     ( )11 11 11
1 1 1 1

11 11 11
1 1 1

yx
k k k k k k k k n k kk

k k k k k k k k k

M C F f M C A x I M F f

M C G d M C w M v

− − − −

− − −

=− − + −

− − −

� �

          

 

Assuming that [ ]1 0kxε − =�  we define the following 
notations :  
 11 y

k k p kkM F IΦ = = −Σ  , 11
1

f x
k k kkE M C F −=                  (57) 

11
1

d
k k k kE M C G −=  where ( ) ( )y y

k k kI F F
+

Σ = −               (58) 

Using the same technique presented in [9] the expectation 
value  of  the kf�  is given by: 
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( ) ( )

( ) ( )

1 1 2 2 2

0 0 1 1 2 1 01 1

1

1 (59)

kf f f f
k k k k k k k kk k k

kf f f fd d d
k k k kk k

f f E f E E f E E

E f E d E E d E E E d

ε − − − −

− − −

⎡ ⎤ =Σ − Σ + Σ + + − × ×⎢ ⎥⎣ ⎦

× Σ − + + + − × ×

� " "

" "
  

We assume that 1 0f
iiE −Σ =  and   0d

iE =   for 1, ,i k= … , 
then we obtain: 

k k kf fε ⎡ ⎤ = Σ⎢ ⎥⎣ ⎦
�                                                                      (60) 

To obtain an unbiased estimation of the fault , the gain matrix 
11
kM  should respect the following constraints :  
11 y
k kkM F =Φ , 11

1 1 0x
k k k kM C F − −Σ = , 11

1 0k k kM C G − =     (61)                         
The equation (61) can be writen as  

11
k k kM E T=                                                                         (62) 

where [ ]0 0
k k

T = Φ , 1 1 1
y x

k k k k k kkE F C F C G− − −
⎡ ⎤= Σ⎢ ⎥⎣ ⎦

  (63)                                                 

Using (63), we can determie the gain matrix 11
kM  as follows: 

11 *
k k kM T E=  where ( )* 1 1T T

k k k k k kE E H E E H
+− −=               (64)                                                 

The state estimation error is given in the following form : 
( ) ( )21 21 21 21

/ 1 1 1
y

k k k k k k k k k k k k k kkx I M C x M F f M C G G d M v− − −= − − − − −��        

( ) ( ) ( )21 21 21 21
1 / 1 1 1 1 1

yx
k k k k k k k k k k k k k k k kkI M C A x I M C F f M F f M C G G d− − − − − −= − + − − − −��

                              ( )21 21
1k k k k kI M C w M v−+ − −                        (65) 

To obtain an unbiased estimate of the state, the gain 21
kM  

should be satisfy the following constraints: 
21 0y
k kM F = , 21

1 1 1 1
x x

k k k k k kM C F F− − − −Σ = Σ                       (66)                                       
21

1 1k k k kM C G G− −=                                                            (67) 
From (66)-(67) we obtain: 

21
k k kM E = Γ ,where 1 1 10 x

k k k kF G− − −
⎡ ⎤Γ = Σ⎢ ⎥⎣ ⎦

            (68)                                                            

Refer to (65), the error state covariance matrix is given in 
following form 

( ) ( )21 21 21 21
/ 1

TTx x
k k k k k k k k k kP I M C P I M C M C M−=− − − +                    (74) 

21 21 21
/ 1 / 12

T Tx x T x
k k k k k k k k k kP M C M P C M P− −= − +                                  (75) 

The gain matrix 21
kM is determin by minimizing the trace of 

the covariance matrix x
kP such as (67). 

( ) ( )*21 1 * *
/ 1
x T

k k k k k k k k kM P C H I E E E−
−= − +Γ                     (76) 

Updating the filter is given by the equations (53) - (54) 

 5.  AN ILLUSTRATIVE EXAMPLE 
We consider the same numerical example used in [14].  The 
linearized model of a simplified longitudinal flight control 
systems is the following: 

( ) ( )1
a a

k k k k k k k k k kx A A x B B u F f w+ = +Δ + +Δ + +  
s s

k k k k k ky C x F f v= + +  
where the state variable are pitch angle zδ , pitch rate zw  and 
normal velocity yη , the control input is elevator control 

signal. a
kF and s

kF  are the matrices distribution of the actuator 

fault a
kf and sensor fault s

kf . 
The presented systems equation can be rewritten as follow: 

1
a a

k k k k k k k k k kx A x B u F f G d w+ = + + + +  
s s

k k k k k ky C x F f v= + +  
Where a

kF  and s
kF are the matrices injection of the faults 

vector in the same and measurement equations. 
0x a

k kF F⎡ ⎤= ⎢ ⎥⎣ ⎦
, 0y s

kkF F⎡ ⎤= ⎢ ⎥⎣ ⎦
 

The term k kG d  represents the parameter perturbation in 
matrices kA  and kB . 

k k k k k kG d A x B u=Δ +Δ  
The system parameter matrices are: 

0.9944 0.1203 0.4302
0.0017 0.9902 0.0747

0 0.8187 0
kA

⎡ ⎤−
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎣ ⎦

,
0.4252
0.0082

0.1813
kB

⎡ ⎤
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎣ ⎦

,

3 3kC I ×= , ,
T

k z z yx wδ η⎡ ⎤= ⎢ ⎥⎣ ⎦ ( )20.1 4kR eye=

{ }2 2 20.1 , 0.1 , 0.01kQ diag=   

We inject simultaneously two faults in the systems, 

( ) ( )
( ) ( )

4 20 4 60
2 30 2 70

a
k s s
s s sk

f u k u k
u k u kf

⎡ ⎤ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥− − + −⎢ ⎥ ⎣ ⎦⎣ ⎦
 

where su is the unit -step function. The first fault  a
kf  occus 

in the actuator and the second fault s
kf  occus in the sensor zδ

The unknown a disturbance is given by: 
1311 12 1

2321 22 2
k k k k k

aa a b
G d G x u

aa a b

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪ΔΔ Δ Δ⎪ ⎪⎢ ⎥ ⎢ ⎥= +⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪ΔΔ Δ Δ⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭
  

where ijaΔ and  ijbΔ  ( )1,2 ; 1,2,3i j= = are perturbations in 
aerodynamic and control coefficients. 
The matrices injections of the fault and unknown disturbances 
are taken as follows: 

0
1
0

kG
⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

,
0.4252
0.0082

0.1813

a
kF

⎡ ⎤
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎣ ⎦

,
0
0
1

s
kF

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

In this simulation, the aerodynamic coefficients are perturbed 
by 50%±  , i.e  0.5ij ija aΔ =−  and 0.5b bij ijΔ = .  

In addition, we set 10ku = , [ ]0 0 0 0 Tx = , ( )2
0 0.1 3P eye=    
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Fig1.   Actual state kx  and estimated ˆkx  

 

 
Fig2 . Actual fault kf  and estimated k̂f  

  

 
Fig3. Trace of the covariance matrix  x

kP   
 Figures 1 and 2 present the actual state and fault 
vector  and theirs estimated values obtained by the proposed 
filter .Convergence of the trace of the state covariance matrix  
and fault covariance matrix are shown respectively in Fig 3. 

CONCLUSION 
  In this paper, the robust filter is developed to obtain 

an effective state and fault estimation of linear stochastic 
system in presence of unknown input. The advantages of this 
filter are especially important in the case when we do not have 
any prior informations about the unknown disturbances and 
fault. An application and the robustness of the proposed filter 
has been shown by an illustrative example. 
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