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Abstract— This paper presents a new robust fault and state
estimation based on recursive least square filter for linear
stochastic systems with unknown disturbances. The novel
elements of the algorithm are : a simple, easily implementable,
square root method which is shown to solve the numerical
problems affecting the unknown input filter algorithm and
related information filter and smoothing algorithms; an iterative
framework, where information and covariance filters and
smoothing are sequentially run in order to estimate the state and
fault. This method provides a direct estimate of the state and
fault in a single block with a simple formulation. A numerical
example is given in order to illustrate the performance of the
proposed filter.

Keywords—Kalman filtering, unbiased minimum-variance, state
and fault estimation, unknown disturbance, square root, linear
discret- time systems.

I. INTRODUCTION

In the past few years, the problem of filtering in the
presence of unknown inputs has attracted big attention, due to
its applications in environment. The unknown input filtering
problem has been treated in the literature by different
approaches. The first approach assumes that the model for
dynamical evolution of the unknown inputs is available. When
the properties of the unknown input are known, the augmented
state Kalman filter (ASKF) is a solution. To reduce computat-
ion costs of the ASKF [1] proposed the two stage Kalman
filter where the estimation of the state and unknown input are
decoupled. The second approach treats the case when we not
have a prior knowledge about the dynamical evolution for
unknown input. Kitanidis [2] was the first to solve the
problem using the linear unbiased minimum-variance. An
extend Kitanidis filter using a paramaterizing technique to
obtain an optimal filter (OEF) have been proposed by
Darouach et al [3]. Hseih [4] has been developed a robust-two
stage Kalman filter (RTSKF) equivalent to Kitanidis filter. An
(OMVF) reported by C.S Hsieh [5] have been used in order to
developed an optimal minimum variance filter (OMVF) to
solve degradation problem encountered in (OEF). Gillijns and
De Moor [6] has treated the problem of estimating the state in
the presence of unknown inputs which affect the systems
model. They have been developed a recursive filter which is
optimal in the sense of minimum-variance. This filter has been
extended by the same authors for joint input and state
estimation to linear discrete-time systems with direct
feedthrough where the state and the unknown input estimation
are interconnected. This filter is called recursive three step
filter (RTSF) [7] and is limited to direct feedthrough matrix

with full rank. Cheng et al, [8] proposed a recursive optimal
filter with global optimality in the sense of unbiased
minimum-variance. This filter is limited to estimate the state.
The case of an arbitrary rank has been proposed by Hsieh in
[9] the designed optimal filter Known as ERTSF (Extend
RTSF). Recently, another technique using a least square
method have been proposed by Talel et al, [10] to estimate
the state and unknown input.

The Fault Detection and Isolation (FDI) problem for linear
systems with unknown disturbances is generally studied, see
e.g. Nikoukhah [11], Keller, [12], Chen and Patton, [13,14],
Ben Hmida et al, [15]. According to [11], a robust fault
detection and isolation in continous-time is developed using
the error innovation technique to generate an unbiased white
residual signals. The fault is diagnosed by a statistical testing.
A new method is developed in [16] to detect and isolate
multiple faults appearing simultaneousely or sequentially in
linear time-invariant stochastic discrete-time systems with
unknown inputs [12]. Their methods consist of generating
directional residuals using an isolation filter. In [13] the
optimal filtering and robust fault diagnosis problem has been
studied for stochastic systems with unknown disturbances.
The output estimation error with disturbance decoupling is
used as a residual signal. After that, a statistical testing
procedure is applies to examine the residual and to diagnose
faults. Netherless, the simultaneous actuator and sensor fault
and state problem is not treated in [13, 14]. Recently, [17]
present a new optimal recursive filter for state and fault
estimation of linear stochastic systems with unknown
disturbances. This method is based on the assumption that no
prior knowledge about the dynamical evolution of the
unknown disturbances is available. The filter has two
advantages: it considers an arbitrary direct feedthrough matrix
of the fault and it permits a multiple faults estimations.

In order the overcome this problem, we introduce the square
root approach into recursive least square filter. We assume
that the unknown disturbances affect only the state equation,
while, the fault affects both the state and the output equations
where the direct feedthrough matrix has an arbitrary rank and
under the specific condition that the process and measurement
noise are correlated.

This paper is organized as follows. In Section 2, the
problem of fault detection is specifically stated for stochastic
system. In section 3, we develop a robust filter. Then, the
performance of the designed filter is demonstrated through a
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simulated example in section 4, followed by few concluding
remarks in section 5.

Il. PROBLEM FORMULATION
Consider the linear stochastic discrete-time system in the
following form:

X1 = Ak + Byl + R i+ Gydy +w M)
Yk = Ciox + R fic v @
Where  x €¢R"is the state vector,y, € R™is the

measurement vector, u, € R is the known input, f, € RP

is the additive fault vector and d, € R%is the unknown
The process noisew, and the
measurement noise v, are correlated white noise sequences
of zero-mean with joint covariance matrix

Vi WH _ R Sk
W Sk Qx
With R, >0, where ¢ is the unit pulse. The matrices A,

disturbances vector.

€ o >0

)

v

B, R .G, Cyand Fkyare known and have appropriate

dimensions. We assume that (C,,Ac) is observable,
m> p-+q and the initial state is uncorrelated with the white

noises w, and v . The initial state xq is a gaussian random
variable with &[xy]=%y and g|:(x0 ~ %) (%0 — %o ) } =R

where [.] denotes the expectation operator. The aim of this
paper is to design an unbiased minimum-variance linear
estimator of the state x, and fault f, without any information

concerning the fault.
First we represent the process and measurement noise in the
following form:

Vi Rllz 0 \7k
Wy X ‘ Q1/2

Ty
The matrices X, and Q,, satisfy
X = SR, Quic = Qi — SR SY (5)

To represent the state information an equation format, we
introduce an auxiliary random variable % ,,_; with mean zero

{Yk}(o,lmm) @

and covariance matrix I,,, that is %3 ~(0,1,). Since we
assumed the covariance matrix B_jto be semi-positive

definite, we can compute its square root Fﬁ% _1 such that:
T/2
Rek1 = Relk1Pdica (6)
This square root can be chosen to be upper or lower triangular
With % i 1, fi/k_1, dx_gand RY2 4 so defined , the variable
X, can be modeled through the following matrix equation :

o 12 o
Xk = Xi/k-1 ~ Gx-10k-1 — Rrk 1%k @)
This equation is called a generalized covariance representation

~ 12 o

X rk-1 = Xk + Beric-a %k + Gk k4 8)
From equation (1), (2) and (9), we obtain the following set of
constraint equations on the unknown x; , fi andx, 4 :

Raka ] | 00 G O Ria0 0 Xerk-1

Yo |=|Cc R 0 {fk }{ Zl 01%1} 0 R o0 || g 1 ©)
Bud |A RS - %) L 0 G- o X, QUE|L W
Let this set of equations be denoted compactly by
y(k)=F(k)X(k)+G(k)d (k)+L(k)z(k) (10)

The weighted least-square problem for the derivation of the
square-root filter algorithm by:

fi(k) subject to y(k)=F(k)x(k)+G(k)d (k)+L(k)z(k)

The goal of the analysis of the weighted least-square problem
is the derivate of square root solution for the filtred and one
step ahead predicted state and fault estimation. Therefore, we
will address the numerical transformation involved in solving
(10) in two consecutive parts. We start with the derivation of
the square-root algorithm for computing the filtered state and
fault estimation in section 3.1 and the derivation for the
computation of the one-step ahead prediction is presented in
section 3.2.

minﬁ(k)T
Yk

C —In 0
We define the following transformation 7" { I: 0 0]
0 0 I,
then using 1™ ,resulting transformed set of constraint equation
is:
Ty (k) =T,"F (k)X (k)+T,"G (k)d (k) +T,"L (k) (k)
Then we have:

. 1 2 2

Gefika—¥] [0 -R 0 {[x GG Oy GRia —R” 0 Xklk - (11)
Xk = 0 0 ||f |+ G O {skl} i 0 0
—Belg Ao Rl D 0 G 0 X Q2

So from (11) we formulate the problem (LS) as follows:
2

Cifka—¥ | |0 —F! 0 [ %
_min foes |- 0 0 |lf (12)
o - Byuy L S R IR N .
where v is the weighting matrix chosen as follows:
1/2 1/2 12 12 T
CePika R 0 [|CRgka -R® 0
— 1/2 1/2
W, =| | Rk 0 0 ||Rijka 0 0 (13)
0 X Q|0 X Qlk

The objectif of the next section is to design an unbiased
minimum variance linear estimator of the state x, and the

fault f, without any information concerning the fault f) .

Il. FILTER DESIGN
To solve the problem (12), we propose to decompose it into
two parts: a first part to estimate an unbiased minimum
variance of the state and fault and a second part to the time
update of the filter.
A Measurement update
The measurement update is derived from (12) by extracting
the rows that depend only on x, and f, . This yield,
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2
[Yk CreXer 1} [0 Fkyﬂxk}
Rie/k-1 0 |Lfk 7,

Where fVT/I,;\ denotes the weighting which we give a stochastic

(14)

min
(S

interpretation by choosing

12 1/2 172 2
|| CkBaka R CBdka R (15)
YR, o | A%, o

The problem is to determine a linear estimate fk, X of on the
given data y, and X,_q which have the following form

f —C X
fk :Mk{)’k K k/kl}
Xy Xk/k-1

With My e R2™(M20)  uch that both estimates are a

minimum-variance unbiased estimate that is estimate with the
properties:

(16)

E(Xk>:€(xk7)’ik>:0, (17)
€(f~k>:6(fk—fk)20, (18)

and the expression below are minimal:
€[(Xk7)’ik><xk7)’ik)T}, (19)
S(fk—fk)(fk—fk)-r], (20)

a. Unbiased estimation

To obtain an unbiased estimation of state and fault, the matrix
M\ must satisfy the following two algebraic constraints:

0o —FY| |0 1
M kKl= n 21
S B (21)
—C Gy
m| ] X (22)
Mt M2

We partitions the matrix ™, =

in the constraint
M#E M2

(21) as follows :

12 11
Mi® MicR| [0 1, 23
ME2 MERY| [l O
hence {M&Z OMERY =1, MZ =1, MZF, :o} (24)
with M eRP™ M2Le®R™M . On substituting the
constraint equation (22) it can be given as follows
Mt M-, G 0
;1 22 y kil]:[ } (25)
M MZ| G 0
~MIC Gy + MG =0 MiC,G, ;=0 (26)
~MZC, G 1+ MGy =0 MECG 1 =Gy 1

The estimators fk and %, are unbiased if M&l and Mﬁl

satisfy the following constraints:
MEE, =T,
MZE, =T,

(27)
(28)

where
E, :[Fky Cka—l]'Tk =[lp 0Jand I', =[0 Gy_4] (29)

The innovation error §, has the following form

Yk = Yk—Cichrk—r = F T + Ci Gy +8x (30)
where

e = CyXi/k—1 + Vk (31)
Xk = A 1%k 1+ Reafea +wi g (32)

Lemma: Let rank (Fky): p; the necessary and sufficient

conditions so that the estimator X, and fk are unbiased as
matrix E, is full colum rank, that is,

rank (Ex )= rank(Fky Cka,l) =p+q.
In the next subsection, we propose to determine the gain M&l

and Mﬁz by satisfying the unbiasedness constraint (17) and
(18).

b. fault estimation
Equation (30) will be written as

Yk = Bk + & 33)

dk a1
Sine g, not have unit variance and §, does not satisfy the

assumption of the Gauss-Markov theorem [17], the least
square solution do not have a minimum-varianve. Netherless,
the covariance matrix of e, has the following form

T = T
Hy = €[ekek }: Cy Rdk—1Ck + R«
5X = =T
where Ry = E(Xk/kflxk/kfl)

For that, fk can be obtained by a weighted least square (WLS)

(34)

estimation with a weighting matrix Hk_l.

Theorem : Let X, be unbiased; the matrix Hy is
positive definite and the matrix E, on is full column rank,

then to have a UMV fault estimation, the matrix gain M&l is
given by

(M) =TyEx where B = (E{ Hic "By JEf Hyc* (35)
Proof: Under that H, is positive definite and an invertible

%mxm

matrix Ly € verifies Ly L{ =H,, so we can rewrite

(30) as follows:
f
LS = LEx [d ‘
k-1
If the matrix Ej is full column rank, that is, rank(E,)=p+q,
then the matrix (E[Hk—lEk) is invertible. Solving (36) by an

+ e (36)

LS estimation is equivalent to solve (33) by WLS solution:

. -l L
fi :Tk(EIIHklEk) Ex Hi 19k (37)

137


PC
Typewriter
137


suppose that

(ME) =T (B e ET i (38)

In this way, we consider that L[lel< has a unit variance and

(36) can satisfy the assumption of the Gauss- Markov
theorem. Hence, (37) is the UMV estimate of f .

The fault estimation error is given by:
Fo_ Fo_ 11y 11 11
fk = fk — fk —(l 7Mk Fk )fk 7Mk Ckafld 7Mk ek (39)

Then, the fault error estimation is rewritten as follows:

f :-(M&l) & (40)
from equation (40) we can calculate fk :
Using (34), the covariance Pkf matrix is given by
o [exs * T 4\t
Rl ZE(fk f:T)Z(Mﬁl) Hk(Mﬁl) :Tk(Ei;erl ) W (4D

C. state estimation

In this part, we propose to obtain to obtain an unbiased
minimum variance state estimator to calculate the gain matrix

Mk21 wich will minimise the trace of covariance matrix B
under the unbiasedness constraint (28).
Théoreme: Let E[ Hk’lEk be nonsingular, then the state gain

matrix lelby
21\ 5 T -1 * *
(Mk ) = Rk_1Ck Hg (I_EkEk)“‘FkEk

Proof:
According to equation (16) and after (42), we can deduce that

(42)

Rk =M Rkt +ME (Vi = CiRira) (43)
From (24), we know that Mk22 = |, then we have:
R = Rkt +ME (Vi — CiRir-) (44)
Using (44) the state estimation error, given by
X = X — Xy (45)
R :(| 7Mlglck)§klk—l*M&1Fky fi 7(M&1Q<Q<—176K—1)dk—lfMl§le
Considering (28) and (45), we determine B’ as follows:
R :<| - Ml%lck)fmk—l(l *Mkﬂck)T + MR (Mfl)T
= MEH, (ME) 285, oHT (ME) + By (46)

So, the optimization problem can be solved using Lagrange
multipliers

trace[Mflck(lel)T —2R% .CF (Mk21)T +R§k,1]—2trace[[(M§1)T E —Fk]AI} 47
where A, is the matrix of Lagrange multipliers.
Setting the derivate of (47) with respect to M fl we obtain:
*T
21 5 T
Hk(Mk ) ~Ci Pk — B =0 (48)

Equation (28) and (48) form the linear systems of equation

He —Ex
=

M)

;
Ay

CrRdk1
T
L'y

(49)

So, if (EEHk’lEk)is non singular, (49) will have unique

solution.

B. The filter time update

For the time update, we extract from (11) the equation that
depend on x4 and substitute x, and f, for their LS

estimates X and fk,k obtained during the measurement
update. This yield,

AR+ R e+ Bl = X1 — (A + R i +Wk) (50)
The corresponding LS problem is given by

) . 2
min{x 1 — Ak — e fico— BiUi | - (51)
X1 3K

where ¥ ¢ denotes the weighting matrix which we choose

_ _ . Ty-1
Wik = [(Ai<7<k/k+':l<xfk+Wk>(Ak7<k/k+Fkxfk +Wk) ] (52)
From equation (51), we have

Rk = Ao + R fic+ B (53)

From equation (32), the prior covariance RY_; has the
following form:

_ R R At

Rik-1= [Ak—l FkX—l} b |yt T Qs (54)
Ror R (Fk—l)

Where PX" = f—:[f(;T fk*T] is calculated by using (16)

Rk = *[' *(Mfly Ck] Rk -1Ck <M|<21>*T +MER (Mkzz)*T (55)

4. EXTENDED FILTER
In this section, we seek to extend this filter to consider the

case where 0<rang (Fky) < p. To solve this problem, we

use the same approach developed by [10] . If we introduce
(31) et (32) in (39) , then we will be able to write the fault
error estimation in the following form :

fi = (In - Mﬁley) fi = M"CGy 1y 1 — M (G 1 + Vi) (56)
=-M'C R fi 1 — MIdC A % + (In -M &1Fky) fi
—MC Gy 11 — MlCwy g — Midvy
Assuming that &[%_1]=0 we define the following
notations :

o =MRS =1, -5, E/ =M RS (57)

(58)

Using the same technique presented in [9] the expectation
value of the f, is given by:

Ed = ME'C, Gy 1 where 3, = | _(Fky)+ (,:ky)
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e i) =T f — B i fia + B (BSi2) Tz o (<) B xeeoxEf
x(EleO) fo—EXdi 1+ EE1di 2 +"'+(*1)k E x-xE[ Efdy (59)
We assume that EifZH =0 and Eid =0 fori=1..k,

then we obtain:

e[ fi] = S i (60)

To obtain an unbiased estimation of the fault , the gain matrix

M ﬁl should respect the following constraints :

MR =@, MEC RS 1 =0, MGG 1 =0 (61)

The equation (61) can be writen as

MEE, =T, (62)

where T =[® 0 0], E, = [Fky CeR* %1 CiGiy| (63)

Using (63), we can determie the gain matrix M&l as follows:
— —% —% . + —

Mi" =T Ex where By = (EH "B ) EqHi (64)

The state estimation error is given in the following form :
R = (' - MkZICk)ik/k—l_ MR fy _(Ml%leGk _Gk—l)dk—l_ M,

:(' - MKZJ-CK)Ak—lik/K—l"'(I - Mknck) R fa—MER % _(Mlglcka _Gk—l)dk—l

+(| 7MkZle)Wk—17Mk21Vk (65)

To obtain an unbiased estimate of the state, the gain Mk21
should be satisfy the following constraints:

MRS =0, MEC R 151 = R4Sk (66)
ME'CGy 1 =Gy 1 (67)
From (66)-(67) we obtain:

M%lﬁk = fk ,Where fk = [0 Fkx_lzk_l Gk—l (68)

Refer to (65), the error state covariance matrix is given in
following form

(74)
(75)

The gain matrix Mk21 is determin by minimizing the trace of

2~ \B 21~ |\ 21~ yg 20
R =—(1 = ME'C ) Riia (1 - MEC ) + MM

21, 21" B T2l | 5
RO =MICMT —2RG G M + Ry

the covariance matrix B such as (67).
2 * —~ _ = —% e
(Mkl) = Adjk_1Cx Hi 1(' - EkEk)+FkEk
Updating the filter is given by the equations (53) - (54)

(76)

5. AN ILLUSTRATIVE EXAMPLE

We consider the same numerical example used in [14]. The
linearized model of a simplified longitudinal flight control
systems is the following:

X41 = (A + AA) X +(By +ABy Ju + R i +wy

Vi = Cixe + RS fie v
where the state variable are pitch angle ¢, , pitch rate w, and
normal velocityn, , the control input is elevator control

signal. R¢and F¢ are the matrices distribution of the actuator
fault f2 and sensor fault f,° .
The presented systems equation can be rewritten as follow:
X1 = Aka + Bkuk + Fka fka +dek + Wy

Vi = Cioxi + R e + v
Where RZ and F¢are the matrices injection of the faults
vector in the same and measurement equations.

RO=|R¢ O.R=[0 K]

The term Gyd, represents the parameter perturbation in
matrices A, and By .

dek = AAka +ABkUk
The system parameter matrices are:

0.9944 0.1203 —0.4302 0.4252
A, =|0.0017 0.9902 —-0.0747|,B, =|—0.0082|,
0 0.8187 0 0.1813

T
Cy = lays, X :[62 w, ny] , R¢ =0.1%eye(4)
Q, = diag {0.12, 0.12, 0.012}

We inject simultaneously two faults in the systems,
fit| | 4ug(k—20)—4ug (k —60)
fS —2ug (k —30) + 2ug (k —70)

where U is the unit -step function. The first fault 2 occus
in the actuator and the second fault f,® occus in the sensor &,
The unknown a disturbance is given by:

Aay; Aayy  Aagg
Gd, =G
KTk k{Aaﬂ Nay, Aay

where Agjjand Aby; (i=12 ;j=12,3)are perturbations in

aerodynamic and control coefficients.
The matrices injections of the fault and unknown disturbances
are taken as follows:

0 0.4252 0
Gy =|1|,R* =|-0.0082|, R} =10|,
0 0.1813 1

In this simulation, the aerodynamic coefficients are perturbed

by £50% ,i.e Aa; =—0.5g; and Abij = 0'5bij'

In addition, we setu, =10,%; =[00 O]T , Py =0.1%eye(3)
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Figl. Actual state x, and estimated X,

Fig2 . Actual fault f, and estimated ﬂ(

Fig3. Trace of the covariance matrix R}

Figures 1 and 2 present the actual state and fault
vector and theirs estimated values obtained by the proposed
filter .Convergence of the trace of the state covariance matrix
and fault covariance matrix are shown respectively in Fig 3.

CONCLUSION

In this paper, the robust filter is developed to obtain
an effective state and fault estimation of linear stochastic
system in presence of unknown input. The advantages of this
filter are especially important in the case when we do not have
any prior informations about the unknown disturbances and
fault. An application and the robustness of the proposed filter
has been shown by an illustrative example.
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